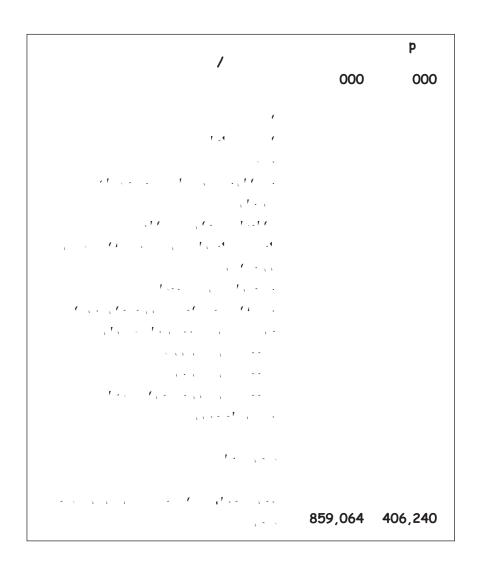
Annual Accounts 2006/2007

Birmingham Ci Co ncil

- · · · · · · · · · · · ·
- - , , ', , . . .

 $\mathbf{p} = \mathbf{A} + (\mathbf{x}_1 + (\mathbf{x}_2 + (\mathbf{x}_1 + (\mathbf{x}_2 + (\mathbf{x}_1 + (\mathbf{x}_2 + (\mathbf{x}_1 + (\mathbf{x}_2 + (\mathbf{x}_1 + (\mathbf{x}_1 + (\mathbf{x}_2 + (\mathbf{x}_1 +$


 $\mathbf{H} \qquad \mathbf{A} \qquad \dots \qquad (1, -1) < \dots \qquad \dots \qquad (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1) < (1, -1)$

PA and the second secon

Α

A 2006/2007

p

		AN	
	2006/07 000	2006/07 000	000
- yes at the second sec			
the state of the second			

р р

H A (HA)

M

it is the second s

- II will a final and a second s

р

P P

in a star of the providence of

 $\mathbf{1}^{\prime} \qquad \mathbf{1}^{\prime} \qquad \mathbf{1}^{\prime}$

A 2006/2007

1. p p

2. p p

3.

(1 + 1) + (1 +

A structure s

 $(x_{1}, y_{2}, y_{3}, y_{3},$

the second second states and stat

and a second sec - , /

the second and the second s (x, y) = (

and the second sec

1

 $= \sum_{i=1}^{n} \frac{1}{2} \sum_$

- Alt to the second of the second states the second s . . . /

and the second states and the states of the states and the states of the

(1 + 1) + (1 + $\sum_{i=1}^{n} \frac{1}{2} = \sum_{i=1}^{n} \frac{1}{2} = \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} = \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$ • i \

5.

> and a set of the standard standard and the set of the standard stand Standard stan and the second s

. (-1 , - - -Μ

and the production of the second design of the second seco

 $(f_{1}, f_{1}, f_{2}, f_{3}, f_{3},$

- . . .

1, 1, , ,

Α

)

) р

)

)

)

ne en la companya de la companya de la companya de la develo de la develo de la develo de la develo de la deve A companya de la companya de la companya de la companya de la develo de la develo de la develo de la develo de l

)

) р

P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P

1	
	(/ .
	< · · ·
	< <i>(</i> ,
	(/ .

 $\mathbf{p} = \mathbf{A} \qquad \dots \qquad \mathbf{a} \qquad \mathbf{a} \qquad \mathbf{b} \qquad \mathbf{a} \qquad \mathbf{b} \qquad \mathbf{c} \qquad \mathbf{c$

) p A

) ℍ

Α

 $(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) + (x_1, x_1, \dots, x_n) + (x_1, \dots, x_n)$

()

the type of a stand of the territory of the standard standa

(1, - -) + (1, -) + (1

_____p

 $^{= \}frac{1}{\sqrt{1 + 1}} + \frac{1}{\sqrt{1 + 1}} + \frac$

2005/06 ام p 000		р 000	000	2006/07 N P 000
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
1,323,953		3,021,849	2,141,865	879,984
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v = v =		
1,475,212	№ р р			1,011,677

14		
1 . 1	1 (- (, -	
1.1	· · · · · · · · · · · · · · · · · · ·	
, ¹		
1 1	· · · · · · · · · · · · · · · · · · ·	

18,030

 $\left\{ \begin{array}{cccc} x & d & x & \cdots & f_{X-X} \\ & x & y & y & d & x & y \\ & x & y & y & d & x & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y & y \\ d & y & y & d \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{cccc} x & d & y \\ d & y \\ \end{array} \right\} = \left\{ \begin{array}{ccccc} x & d & y \\ d & y \\ \end{array}\right\} = \left\{$

146,724

2005/06 000	2006/07 000
(3,910)	862
(29,545)	(28,683)

N 0

		2005/06 000	2006/07 000

31	M 000		N	31 000	Μ	2007 000
		· · · ·				
			- 1			

31	M 000	2006		N	31 000	M	2007 000
			}				
2,7	799,399	N				3,06	9,889

Α

Μ

å

n and the second state of the transmission of the second state of

Μ

 $\sum_{i=1}^{n} \left(\frac{1}{2} + \frac{1}{2} +$

P

the fit is the fit of the fit of the state o

en al de la construction a la construction de la co

2. M

3.

the for a contract of the former of the contract of the contra

4. p

its solution of the second sec

2005/06	2006/07

5. 137 p

6.

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

 $(f_{1}, f_{2}, f_{2}, f_{1}, f_{2}, f_{2},$

 $\frac{1}{1} = \frac{1}{1} \sum_{i=1}^{n} \frac{1}{1} \sum_{i=1$

р	2005/06 000	2006/07 000	
N ()	(27,775)	(15,310)	
111 11 1	(_(_ ₁ . () .		11

	· , , , 			
()	(950.9)	(804.5)	

at the term of the second s

	Α	31.03	.2006	Α	31.03	8.2007
		000	%		000	%
<i>·</i> !						
- /						
1, 1.1						
- 1						
		2,161.3	100		2,342.3	100

'000

· · · · · · · · ·

31.03.07 (804,481)

Ар	31.03.2006 %	31.03.2007 %
p	A	

Μ	2005/06 000	2006/07 000
(), (), () 1// (- ()) (() ()) (- ()) (- ()) - () () (- ()) (- ()) - () (- ()) (- ()) (- ()) - () (- ()) (- ()) (- ()) - () (- ()) (- ()) (- ()) (- ()) - () (- ()) (- ()) (- ()) (- ()) - () (- ()) (- ()) (- ()) (- ()) (- ()) - () (- ()) (- (
	(950,848)	(804,481)

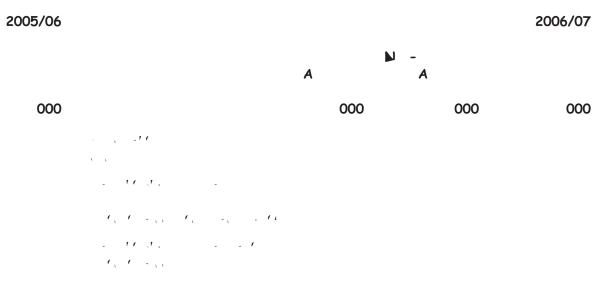
A &	2002	2002/03		2003/04		2004/05		2005/06		5/07
	000	%	000	%	000	%	000	%	000	%
, , , , , , , , , , , , , , , , , , ,										
N A /()	(529,240)	:	179,198		(320,909)		4,068	:	183,085	

A	2002	2002/03		2003/04		04/05	2005/06		2006/07	
A &	000	%	000	%	000	%	000	%	000	%
, , , , , , , , , , , , , , , , , , ,										
N A /()	0.00		0.00		(4,582)		(5,126)		1,886	

 $\frac{1}{2} \left(\frac{1}{2} + \frac{1$

7. M A

(1) A start strateging the strateging str


680

 $(f_{1}, f_{2}, f_{1}) + (f_{2}, f_{2}) + (f_{2}, f_{2}$

823

8.

2006/07

10.

р

	p	A P	
Μ			
	268,916	91,919	176,997
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
M :	530,394	503,079	27,315

. / -

рр А

in the second second

	2005/06	2006/07	
1			
	1,131,776	1,362,582	
	1,131,770	1,302,302	
· · · · · · · · · · · · · · · · · · ·			
N p /	0	572,391	

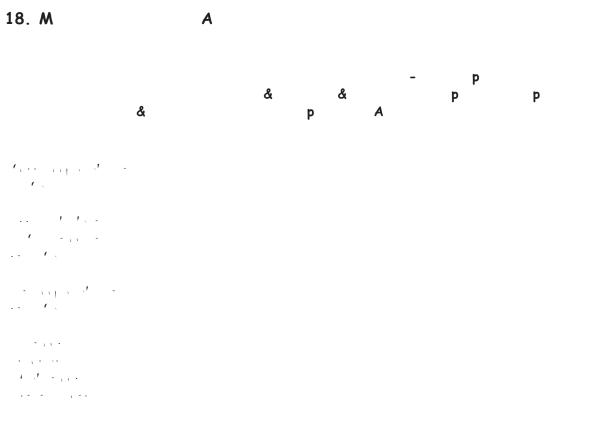
11. A

13.

2005/06	2006/07
57.9	57.3

14.

)


	A	l	
	000	000	000
- 1			
- 1			
- 1			
- 1			
- 1			

)

	P		
	000	000	000
	50,819	626,973	677,792
$\mathbf{x}_{1}, \mathbf{y}_{1} = \mathbf{x}_{1} + \mathbf{x}_{1} +$			
$\cdot \qquad \ldots \qquad \cdot \qquad $			
() p 2007-08	1,277	9,904	11,181

17. p p

р р р А	2005/06	2006/07	p	2005/06	2006/07
р р А	489.2	294.6			
рр	550.1	406.2		550.1	406.2

1 - 11 11 1

▶ 2,345.4 2,410.9 21.4 434.0 201.0 234.3 5,647.0 A 31 M 2007

19. A

р (🖁 Н) № - р А :

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{$

p A (H):

A :

:

20. , A

рА (31.03.06 31.03.07) 11.1.1 . t, t, t. 1 - . · . · · · 1 - · - ·

р рр

21. p

2007/08 2008/09 2009/10

P

26.

at the second second sector sectors to second

31.03.06

31.03.07

36.0

31.4

27.

31.03.06 000	31.03.07 000

28. A

31.03.06	31.03.07

304.2

340.6

282.9

1,1.,1.,1

244.8

 $(x_1, x_2, \dots, x_n) = (x_1, x$

30.

31.

29.

Α

. . . .

1,560.8 336.1

1,384.0

1,560.8

31.03.06

31.03.07

1,384.0

1,560.8

1,224.7 1,499.4

32.

i i dali di sita i i i i i i i i i

31.03.06

31.03.07

392.7

423.1

33.

31.03.06

31.03.07

115.8

113.7

34.

 $= -\frac{1}{2} \left\{ -$

35.

	31.03.06	Арр		31.03.07
- (
	29.4	15.1	0.0	44.5

35.1 N .

35.2

teres and the second se

36. A A

 $(1 \quad (\dots, (1 \quad \dots \quad ($

		2005/06	2006/07
· · · · · · · · · · · · · · · · · · ·			
1 .1			
· · · · · · · · · · · ·	· · · · · · · ·		

 $\chi + \chi \infty \chi$. I $\chi \to \chi$

38.

31.03.06	Μ		31.03.07
143.5		1.7	145.2
181.3		7.2	188.5

(1) = (1) + (1)

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \frac{$

.

$\ell = \ell \ell_{\chi} \ell_{\chi}$	1
	1
	1

 $(1, \ell + \ell) = (1, \ell + \ell) = (1,$

P		р	
000	000	000	000

 $\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$

-

H

BH -

$(i \in \{i\}, i \in \{i\}, j \in \{i\},$

- 1

12,092.0 1,281.2 559.5 12,813.7

000 000 000 $(f_{1}, f_{1}, f_{2}, \dots, f_{n-1}, f_{n-1}) = (f_{1}, f_{2}, \dots, f_{n-1})$ & -((, I (I ... 1.1 (- ... (1) ... (1... · · · · · · · · · · · · · -H H -.111 11.-

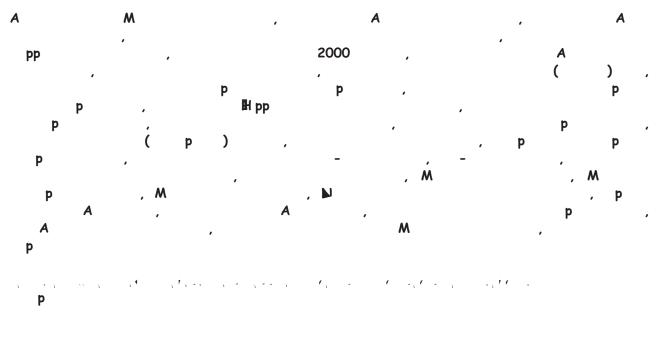
43. A р

рА

the second standard s -, -

it all is a second of the second s

n and the analysis of the next of the second states of the second states of the second states and the second states and the second states and the second states are second states ar 1 . - . - 1 . 1 -, - , , . -

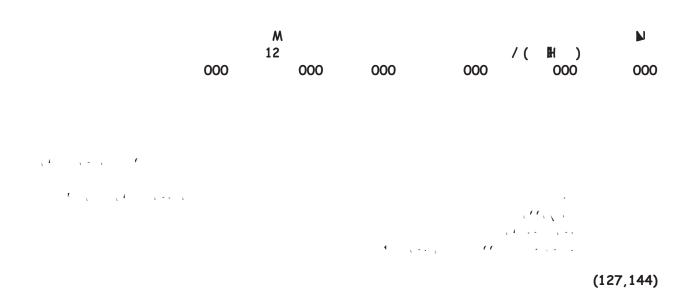

(-1) = (-1) =....

 $N = \begin{pmatrix} p \end{pmatrix} p A$ = (1 + 1) + (1 + 1, ⁷, - - ,

the second s

 $(I_1 I_2, \dots, I_{n-1} I_{n-1}$

44. p


Ар 🗄 () рА

 $\frac{1}{\sqrt{1-1}} = \frac{1}{\sqrt{1-1}} = \frac{1}$

.

47.	•	Α	
		2005/06	2006/07
17 J 11 1 11 J 11 J 11		17.4	142.5
		(8.5)	130.8
1 ¹ , (), ,			
		(168.7)	(99.2)

.

49. A

01.04.06 000	000	31.03.07 000
1,385,980	127,144	1,513,124

50.

A A 2005/06 2005/06 000 000		A 2006/07 000	A 2006/07 000
(228,973)			(222,356)
	P $f_{1} = f_{1} = $		
188,944	р		185,819
(40,029)	N HA A p A		(36,537)

A 2005/06 000 A 2006/07 000

2005/06 000		N	2006/07 000 000
328,369			339,057
644,510			668,169
322,260	P		331,737
320,983			332,266
592	(p)/		(675)
643,835			663,328
(675)	(p)/		(4,841)

p p A

2005/06 000		000	2006/07 000
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
1,299,516	P (************************************		851,831

p

	2005/06 000	2006/07 000
р р А	17,623	144,617
	2005/06 000	2006/07 000
$= I - f - \chi = -\chi + \chi $		
()	(922,490)	(276,994)
Μ	(922,490)	(276,994)

31.03.06 000

31.03.07 000 000

p

P

2005/06 2006/07 2006/07 (195.8) N ()/ (133.7) Α å :

. . / . . :

1. H

		1	2	3	
		M			
× -•					
, / - ,	$V_{1} = \gamma_{1} \chi^{2}$				
H	31.03.2007	20,133	20,842	25,895	66,870

2005/06 2006/07

2.

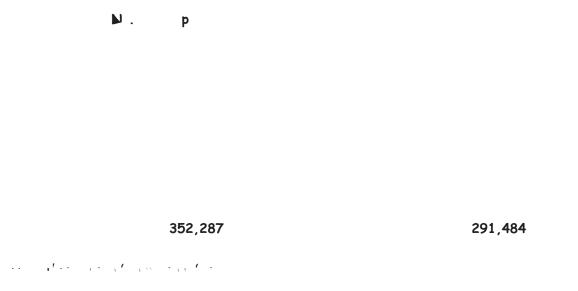
P

3.

 $\frac{1}{2} = \frac{1}{2} = \frac{1}$

2005/06	2006/07
000	000

× 1 -


9.

10. A

11. p

12. p

(x + y) = b + (x + y) = (x + y) =

285,655

 $\langle A_{-1} \rangle_{i_{1}} \langle A_{-1} \rangle_{i_{2}} \langle A_{-1} \rangle$

and the star in the star of the star of the star of the star

14. p

15.

16. N p A

 $\frac{1}{2} \left(\frac{1}{2} + \frac{1$

17. N p

18. N p

2005/06		2006/07
	p / :	
18.3	A :	139.6
(7.6)	1, 1 . , ,	127.8

. - / . -

A

the second stand to see a second to the second stands to the second stands at the second stand stand stand standstandstat the second standstat the second st

A set to set a set of set

Α

A (A A)

and the second second

every end of the end of

Α

H A (HA)

n den streen en soere de service de service de service de service strees de service strees de service strees de s

HA

the state of the second state of the state o

р

Α

and the construction of th

the second secon - it is the set of the

p

ist is it is it it is a

Μ

and the second second state and the second second states and the second second states and the second second second states and the second s

(M) Μ

it is the construction of the second se 1

N -(NN)

in a second s

N

р

.

in the second difference of the second se - in a set of the set

р

Aliente al el falencia de la companya de le cherce en companya de la cherce en companya de la companya de -1 11 x11 - 1 - x . .

Α

and the second second states the terms of the second states and the second states are second states and the second states are second states and the second states are second · · $t_1 = t_1 (t_1 + t_1) = t_1 = t_1 (t_1 + t_2) = t_2 (t_1 + t_2) = t_1 (t_1 + t_2) = t_2 (t_1 + t_2)$

()

(1, 0) = (1, -1) = (1, -

cyststststy type type to type the company to the company to the company type the company to the company type the type to the company type to

 $\sum_{i=1}^{n} \frac{1}{1} \sum_{i=1}^{n} \frac{1}{1} \sum_{i=1}^{n} \frac{1}{1} \frac{1}{1} \sum_{i=1}^{n} \frac{1}$

P

P P

the product of the second contraction of the product of the second states of the second state

P

(

Α р

 $I_{i} = \{I_{i}, I_{i}, I_{i}$ · - ·

,

 $\frac{1}{2} + \frac{1}{2} + \frac{1$

Α p

r . 1

the for the second s

(

Birmingham City C

If o ha e an commens on hese accons or o ld like an f r her information, please con ac:

Peter Bateman, Corporate Accountant, Birmingham City Council, The Council House, Birmingham B11BB. Tel: 0121 464 8441. email: peter_bateman@birmingham.gov.uk